
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2003; 43:903–913 (DOI: 10.1002/�d.583)

A Reynolds-uniform numerical method for Prandtl’s boundary
layer problem for �ow past a wedge

J. S. Butler1, John J. H. Miller1;∗;† and Grigorii I. Shishkin2

1Department of Mathematics; University of Dublin; Trinity College; Dublin 2; Ireland
2Institute of Mathematics & Mechanics; Ural Branch of RAS; Ekaterinburg; Russia

SUMMARY

In this paper, we deal with Prandtl’s boundary layer problem for incompressible laminar �ow past a
wedge. When the Reynolds number is large the solution of this problem has a parabolic boundary layer.
We construct a direct numerical method for computing approximations to the solution of this problem
using a piecewise uniform �tted mesh technique appropriate to the parabolic boundary layer. We use
the numerical method to approximate the self-similar solution of Prandtl’s problem in a �nite rectangle
excluding the leading edge of the wedge, which is the source of an additional singularity caused by
incompatibility of the problem data. We verify that the constructed numerical method is robust, in
the sense that the computed errors for the velocity components and their derivatives in the discrete
maximum norm are Reynolds uniform. We construct and apply a special numerical method related
to the Falkner–Skan technique to compute a reference solution for the error analysis of the velocity
components and their derivatives. By means of extensive numerical experiments we show that the
constructed direct numerical method is Reynolds uniform. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: boundary layer equations; Prandtl’s problem for wedge; piecewise uniform mesh;
Reynolds-uniform numerical method

1. INTRODUCTION

Incompressible laminar �ow past a semi-in�nite wedge W in the domain D=R2=W is gov-
erned by the Navier–Stokes equations. Using Prandtl’s approach the vertical momentum equa-
tion is omitted and the horizontal momentum equation is simpli�ed, see References [1] and
[2]. The new momentum equation is parabolic and singularly perturbed, which means that the
highest order derivative is multiplied by a small singular perturbation parameter. In this case
the parameter is the reciprocal of the Reynolds number. For convenience we use the notation
�=1=Re.
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Figure 1. Flow past a wedge.

It is well-known that for �ow problems with large Reynolds numbers a boundary
layer arises on the surface of the wedge. Also, when classical numerical methods are ap-
plied to these problems large errors occur, especially in approximations of the derivatives,
which grow unboundedly as the Reynolds number increases. For this reason robust
layer-resolving numerical methods, in which the error is independent of the singular per-
turbation parameter, are required. We want to solve the Prandtl problem in a region in-
cluding the parabolic boundary layer. Since the solution of the problem has another
singularity at the leading edge of the wedge we take as the computational domain the �-
nite rectangle �= (:1; 1:1) × (0; 1) on the upper side of the wedge (see Figure 1). This is
su�ciently far from the leading edge that the leading edge singularity does not cause prob-
lems for the numerical method. We denote the boundary of � by �=�L ∪ �T ∪ �B ∪ �R
where �L, �T , �B and �R denote, respectively the left-hand, top, bottom and right-hand edges
of �.
The Prandtl boundary layer problem in D is:

(P�)




Find u�=(u�; v�) such that for all (x; y)∈D
u� satis�es the di�erential equation

− 1
Re
@2u�
@2y

+ u�:∇u�=U dUdx
∇:u�=0
with boundary conditions

u�=0 on �B

u�= uP on �L ∪ �T

where U (x)= xm is the solution of the reduced problem (�=0), m=�=(2− �) and �� is the
angle in radians of the wedge.
Our goal here is to construct an (Re; �)-uniform numerical method for solving P�. That is

a method having error bounds for the solution and its derivatives independent of Re and �,
for all Re∈ [1;∞) and all �∈ [0; 1].
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2. FALKNER–SKAN SIMILARITY SOLUTION

Using the similarity transformation described (for example, in Reference [3])

�=y

√
(m+ 1)Re

2
U
x

the velocity components of the Falkner–Skan solution uFS of (P�) are given by

uFS(x; y)= u1xmf′(�)=Uf′(�)

vFS(x; y)= −
√
m+ 1
2x

U
Re

(
f +

m− 1
m+ 1

�f′
)

where f is the solution of the non-linear ordinary di�erential equation

(PFS)




For �∈ (0;∞) �nd f∈C3(0;∞)
f′′′ + ff′′ + �(1− f′2)=0
with boundary conditions
f(0)=f′(0)=0; f′(∞)=1

To �nd the components uFS(x; y), vFS(x; y) of uFS, and their derivatives, on the �nite do-
main � for all Re∈ [1;∞), we need to solve (PFS) numerically for f(�) and its derivatives
on the semi-in�nite domain [0;∞). Then we apply postprocessing to determine numerical
approximations to uFS. This process is described in detail in Reference [4] for �ow past a �at
plate.
Here, we make use of the Falkner–Skan similarity solution of Prandtl’s problem in two

ways. First, we use it to provide the unknown boundary conditions that are required on the
boundary of � in the direct numerical method for Prandtl’s problem discussed in the next
section. Secondly, we use it as a reference solution for the unknown exact solution in the
expression for the error. Since the Falkner–Skan solution is known to converge Reynolds
uniformly to the solution of Prandtl’s problem, we can compute Reynolds uniform error
bounds. For this purpose we �nd that the Falkner–Skan solution for (PFS) with N =8192,
namely U8192FS , provides the required accuracy for the velocity components U

8192
FS , V 8192FS and

their scaled discrete derivatives
√
�DyU 8192

FS , DxV 8192FS and DyV 8192FS .

3. DIRECT NUMERICAL METHOD FOR PRANDTL’S PROBLEM

The aim of this section is to construct a direct numerical method to solve the Prandtl problem
(P�) for all Re∈ [1;∞) and all �∈ [0; 1]. We require a piecewise uniform �tted mesh �N� in
the rectangle �. It is important to note the location and width of the boundary layer in order
to determine where to place and to choose an appropriate transition point from the coarse to
the �ne mesh. We de�ne the mesh as the tensor product of two one-dimensional meshes. The
mesh in the x direction is the uniform mesh.

�Nxu = {xi : xi=0:1 + iN−1
x ; 06i6Nx}

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:903–913
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The mesh in the y-direction is the piecewise uniform �tted mesh

�Ny� =
{
yj : yj=�j

2
Ny
; 06j6

Ny
2
; yj=�+ (1− �)

(
j − Ny

2

)
2
Ny
;
Ny
2
6j6Ny

}

where the transition point � is chosen so that there is a �ne mesh in the boundary layer
whenever it is required. The appropriate choice in this case is

�= min
{
1
2
;
√
� ln Ny

}

The factor
√
� may be motivated from a priori estimates of the derivatives of the solu-

tion u� or from asymptotic analysis. The rectangular mesh on � is then the tensor product
�N� =1�

Nu
u ×�Ny� , where N=(Nx; Ny). For simplicity we take Nx=Ny=N .

The problem (P�) is discretized by the following non-linear upwind �nite di�erence method
on the piecewise uniform �tted mesh �N�

(PN� )




Find U�=(U�; V�) such that for all (xi; yj)∈�N�
U� satis�es the �nite di�erence equations

−��2yU�(xi; yj) +U�(xi; yj)D−
x U�(xi; yj)

+V�(xi; yj)DuyU�(xi; yj)=U (xi)
dU
dx
(xi)

D−
x U�(xi; yj) +D

−
y V�(xi; yj)=0

with boundary conditions

U�=0 on �B

U�=UFS on �L ∪ �T

where D−
x , D

+
x and D

−
y , D

+
y are the standard �rst-order backward, respectively forward, �nite

di�erence operators in the x and y directions and, for any continuous function V�(xi; yj) on
the domain �N� , D

u
y is de�ned by

V�(xi; yj)DuyU�(xi; yj)=

{
V�(xi; yj)D−

y U�(xi; yj) if V�(xi; yj)¿0

V�(xi; yj)D+y U�(xi; yj) if V�(xi; yj)¡0

�2y is the standard second-order centred di�erence operator in the y direction. Changes between
forward and backward di�erences are required because at angles �¿0:1, V� is initially negative
and then becomes positive. This means that, without these changes, the tridiagonal system is
no longer diagonally dominant and the continuation algorithm fails to converge.
Since (PN� ) is a non-linear �nite di�erence method an iterative method is required for its

solution. This is obtained by replacing the system of non-linear equations by the following
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sequence of systems of linearized equations:

(AN� )




With the boundary condition UM� =U
8192
FS on �L;

for each i; 16i6N; use the initial guess U0� |Xi =UMi−1
� |Xi−1

and for m=1; : : : ; Mi solve the following

two-point boundary value problem for Um
� (xi; yj)

(−��2y +Um−1� ·D−)Um
� (xi; yj)= (U

dU
dx )(xi); 16j6N − 1

with the boundary conditions Um
� =U

8192
FS on �B ∪ �T;

and the initial guess for V 0� |X1 = 0
Also solve the initial value problem for Vm� (xi; yj)

(D− ·Um� )(xi; yj)=0;
with initial condition Vm� =0 on �B:

Continue to iterate between the equations for Um� until m=Mi;

where Mi is such that

max(|UMi
� −UMi−1

� | �X i ; 1V∗ |VMi� − VMi−1� | �X i)6tol
For notational simplicity, we suppress explicit mention of the iteration superscript Mi hence-
forth, and we write simply U� for the solution generated by (AN� ). We take tol=10−6 in
the computations. We note that there are no known theoretical results concerning the conver-
gence of the solutions U� of (PN� ) to the solution u� of (P�) and no theoretical estimate for the
pointwise error (U� − u�)(xi; yj). It is for this reason that we are forced to apply controllable
experimental techniques, which are adapted to the problem under consideration. These are of
crucial value to our understanding of the computationally problems and are the topic of the
next section.

4. ERROR ANALYSIS

In this section, we compute Reynolds-uniform maximum pointwise errors in the approxima-
tions generated by the direct numerical method described in the previous section. For the sake
of brevity, we show the errors for just one typical value of the angle of the wedge, �=0:6.
The appropriate scaling factor for the vertical velocity is

V ∗= max
�N�

V 8192FS

We compare the approximations generated by the direct numerical methods AN� of the
previous section with the corresponding values of U 8192

FS . We use the following di�nitions for
the computed errors

EN� (U�) = ||U� −U 8192
FS || ��N�

EN�

(
1
V ∗ V�

)
=
1
V ∗ ||V� − V 8192FS || ��N�
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Table I. Computed maximum pointwise error EN� (U�) where U� is generated by (AN� ) for
various values of �, N and �=0:6.

�\N 8 16 32 64 128 256 512

2−0 1.804e-03 1.344e-03 7.610e-04 4.369e-04 2.418e-04 1.324e-04 7.488e-05
2−2 1.389e-02 8.192e-03 4.506e-03 2.402e-03 1.239e-03 6.274e-04 3.137e-04
2−4 3.000e-02 1.663e-02 8.862e-03 4.577e-03 2.321e-03 1.161e-03 5.726e-04
2−6 3.244e-02 1.972e-02 1.095e-02 5.680e-03 2.855e-03 1.422e-03 7.002e-04
2−8 3.292e-02 1.933e-02 1.106e-02 5.803e-03 2.966e-03 1.502e-03 7.519e-04
2−10 3.521e-02 1.924e-02 1.100e-02 5.799e-03 2.966e-03 1.502e-03 7.519e-04
2−12 4.560e-02 1.927e-02 1.096e-02 5.796e-03 2.966e-03 1.502e-03 7.519e-04
2−14 5.100e-02 1.930e-02 1.094e-02 5.794e-03 2.966e-03 1.502e-03 7.519e-04
2−16 5.375e-02 1.932e-02 1.093e-02 5.793e-03 2.966e-03 1.502e-03 7.519e-04
2−18 5.513e-02 1.933e-02 1.092e-02 5.792e-03 2.966e-03 1.502e-03 7.519e-04
2−20 5.583e-02 1.933e-02 1.092e-02 5.792e-03 2.966e-03 1.502e-03 7.519e-04

Table II. Computed maximum pointwise error EN� ( 1V∗V�) where V� is generated by (AN� ) for
various values of �, N and �=0:6.

�\N 8 16 32 64 128 256 512

2−0 3.064e-02 2.034e-02 1.150e-02 6.118e-03 3.308e-03 1.831e-03 1.066e-03
2−2 2.530e-02 1.435e-02 7.258e-03 3.736e-03 1.941e-03 1.027e-03 5.658e-04
2−4 1.995e-02 1.112e-02 5.508e-03 2.793e-03 1.429e-03 7.412e-04 3.955e-04
2−6 1.648e-02 9.162e-03 4.739e-03 2.519e-03 1.280e-03 6.538e-04 3.389e-04
2−8 1.474e-02 7.736e-03 3.779e-03 1.964e-03 1.033e-03 5.451e-04 2.895e-04
2−10 1.385e-02 7.068e-03 3.332e-03 1.687e-03 8.702e-04 4.493e-04 2.329e-04
2−12 1.339e-02 6.744e-03 3.116e-03 1.559e-03 7.919e-04 4.034e-04 2.059e-04
2−14 1.316e-02 6.584e-03 3.010e-03 1.495e-03 7.539e-04 3.809e-04 1.926e-04
2−16 1.304e-02 6.505e-03 2.957e-03 1.464e-03 7.350e-04 3.698e-04 1.861e-04
2−18 1.298e-02 6.465e-03 2.931e-03 1.448e-03 7.256e-04 3.642e-04 1.828e-04
2−20 1.295e-02 6.445e-03 3.918e-03 1.440e-03 7.209e-04 3.615e-04 1.812e-04

The numerical results in Tables I and II, respectively, indicate that the method is Reynolds
uniform for the scaled velocity components U� and (1=V ∗)V�.
In Figure 2 we see that the computed scaled velocity components have no non-physical

oscillations. The boundary layer on the surface of the wedge is apparent for the horizontal
velocity component U�.
We de�ne the computed local order of convergence pN�;comp for the horizontal velocity

component UN
� by

pN�;comp = log2
||UN

� −U 8192
FS ||�N�

||U 2N
� −U 8192

FS ||�2N�
Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:903–913
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Figure 2. Graphs of UN
� and 1

V∗VN� for �=2−8, N =32 and �=0:6.

Table III. Computed orders of convergence pN�;comp, pNcomp for U�−U 8192
FS where U� is generated by (AN� )

for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256

2−0 0.42 0.82 0.80 0.85 0.87 0.82
2−2 0.76 0.86 0.91 0.95 0.98 1.00
2−4 0.85 0.91 0.95 0.98 1.00 1.02
2−6 0.72 0.85 0.95 0.99 1.01 1.02
2−8 0.77 0.81 0.93 0.97 0.98 1.00
2−10 0.87 0.81 0.92 0.97 0.98 1.00
2−12 1.24 0.81 0.92 0.97 0.98 1.00
2−14 1.40 0.82 0.92 0.97 0.98 1.00
2−16 1.48 0.82 0.92 0.97 0.98 1.00
2−18 1.51 0.82 0.92 0.97 0.98 1.00
2−20 1.53 0.82 0.92 0.97 0.98 1.00

pNcomp 1.50 0.83 0.93 0.97 0.98 1.00

and the �-uniform order pNcomp by

pNcomp = log2
max� ||UN

� −U 8192
FS ||�N�

max� ||U 2N
� −U 8192

FS ||�2N�
with analogous expressions for the vertical velocity VN� . The Tables III and IV we give the
numerical results for these computed �-uniform orders of convergence.
We see that for all N¿16 the order of convergence for the approximations to the scaled ve-

locity components in each case is at least 0.78. This indicates that for the velocity components
the method is Reynolds uniform for �=0:6.
The graphs in Figure 3 show where the error in the scaled velocity components is largest.

For the horizontal component this is at points in the boundary layer on the surface of the
wedge and for the vertical component it is at points farthest from the surface of the wedge
on the side of the computational domain closest to the leading edge.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:903–913
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Table IV. Computed orders of convergence pN�;comp, pNcomp for 1
V∗ (V� − V 8192FS ) where V� is generated

by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256

2−0 0.59 0.82 0.91 0.89 0.85 0.78
2−2 0.82 0.98 0.96 0.94 0.92 0.86
2−4 0.84 1.01 0.98 0.97 0.95 0.91
2−6 0.85 0.95 0.91 0.98 0.97 0.95
2−8 0.93 1.03 0.94 0.93 0.92 0.91
2−10 0.97 1.08 0.98 0.96 0.95 0.95
2−12 0.99 1.11 1.00 0.98 0.97 0.97
2−14 1.00 1.13 1.01 0.99 0.99 0.98
2−16 1.00 1.14 1.01 0.99 0.99 0.99
2−18 1.01 1.14 1.02 1.00 0.99 0.99
2−20 1.01 1.14 1.02 1.00 1.00 1.00

pNcomp 0.59 0.82 0.91 0.89 0.85 0.78
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Figure 3. Graphs of U� − UFS and (1=V ∗)(V� − VFS) for �=2−8, N =32 and �=0:6.

In Tables V–VII we display the computed maximum pointwise errors in the approximations
to the scaled �rst-order derivatives of the velocity components. Since DyV = − DxU it is
only necessary to show the errors for one of these. Further computations, not reported here,
show that the errors for the scaled derivatives reduce as the angle � tends to 1, because the
singularity at the leading edge has less e�ect. All of these numerical experiments indicate that
the method is (Re; �)-uniform for all Re∈ [1;∞) and all �∈ [0; 1].
In Tables VIII–X we display the computed orders of convergence for the approximations

of the �rst-order derivatives to the scaled velocity components D−
x V�; D

−
y V� and

√
�D−

y U�
obtained, respectively, from the corresponding Tables V–VII. We see that for each value of
N the orders of convergence stabilize as �→ 0 for �=0:6. In additional computations, not
reported here, similar behaviour is observed for all �∈ [0; 1].
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Table V. Computed maximum pointwise scaled error
√
�||D−

y U�−DyU 8192
FS ||

�N� =�L
where U� is generated

by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256 512

2−2 7.367e-02 3.745e-02 1.896e-02 9.669e-03 5.052e-03 2.784e-03 1.736e-03
2−4 1.394e-01 7.367e-02 3.745e-02 1.896e-02 9.669e-03 5.052e-03 2.784e-03
2−6 1.440e-01 1.004e-01 6.414e-02 3.745e-02 1.911e-02 9.759e-03 5.052e-03
2−8 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−10 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−12 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−14 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−16 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−18 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03
2−20 1.440e-01 1.004e-01 6.414e-02 3.891e-02 2.316e-02 1.343e-02 7.713e-03

Table VI. Computed maximum pointwise error ||D−
y V� − DyV 8192FS ||

�N�
where V� is generated by (AN� )

for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256 512

2−2 2.548e-01 1.811e-01 1.131e-01 6.435e-02 3.451e-02 1.788e-02 9.082e-03
2−4 2.802e-01 1.690e-01 1.068e-01 6.118e-02 3.295e-02 1.713e-02 8.736e-03
2−6 2.929e-01 2.093e-01 1.320e-01 7.711e-02 3.946e-02 2.072e-02 1.135e-02
2−8 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−10 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−12 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−14 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−16 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−18 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02
2−20 2.929e-01 2.093e-01 1.320e-01 8.007e-02 4.748e-02 2.789e-02 1.654e-02

Table VII. Computed maximum pointwise scaled error V ∗−1||D−
x V�−DxV 8192FS ||

�N�
where V� is generated

by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256 512

2−2 8.756e-01 8.233e-01 6.212e-01 3.909e-01 2.419e-01 1.636e-01 7.728e-02
2−4 6.436e-01 6.646e-01 5.492e-01 3.795e-01 2.521e-01 1.761e-01 1.116e-01
2−6 5.860e-01 6.019e-01 5.048e-01 3.652e-01 2.575e-01 1.828e-01 1.255e-01
2−8 5.661e-01 5.714e-01 4.642e-01 3.184e-01 2.210e-01 1.592e-01 1.145e-01
2−10 5.595e-01 5.585e-01 4.457e-01 2.950e-01 1.925e-01 1.291e-01 8.457e-02
2−12 5.570e-01 5.525e-01 4.369e-01 2.838e-01 1.785e-01 1.144e-01 7.007e-02
2−14 5.560e-01 5.496e-01 4.326e-01 2.782e-01 1.716e-01 1.071e-01 6.292e-02
2−16 5.556e-01 5.482e-01 4.305e-01 2.755e-01 1.682e-01 1.035e-01 5.937e-02
2−18 5.553e-01 5.475e-01 4.294e-01 2.741e-01 1.665e-01 1.017e-01 5.760e-02
2−20 5.552e-01 5.472e-01 4.289e-01 2.734e-01 1.656e-01 1.008e-01 5.672e-02
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Table VIII. Computed orders of convergence pN�;comp, pNcomp for
√
�(D−

y U� − DyU 8192
FS ) where U� is

generated by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256

2−2 0.98 0.98 0.97 0.94 0.86 0.68
2−4 0.92 0.98 0.98 0.97 0.94 0.86
2−6 0.52 0.65 0.78 0.97 0.97 0.95
2−8 0.52 0.65 0.72 0.75 0.79 0.80
2−10 0.52 0.65 0.72 0.75 0.79 0.80
2−12 0.52 0.65 0.72 0.75 0.79 0.80
2−14 0.52 0.65 0.72 0.75 0.79 0.80
2−16 0.52 0.65 0.72 0.75 0.79 0.80
2−18 0.52 0.65 0.72 0.75 0.79 0.80
2−20 0.52 0.65 0.72 0.75 0.79 0.80

pNcomp 0.52 0.65 0.72 0.75 0.79 0.80

Table IX. Computed orders of convergence pN�;comp, pNcomp for D−
y V� − DyV 8192FS where V� is generated

by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256

2−2 0.49 0.68 0.81 0.90 0.95 0.98
2−4 0.73 0.66 0.80 0.89 0.94 0.97
2−6 0.48 0.66 0.78 0.97 0.93 0.87
2−8 0.48 0.66 0.72 0.75 0.77 0.75
2−10 0.48 0.66 0.72 0.75 0.77 0.75
2−12 0.48 0.66 0.72 0.75 0.77 0.75
2−14 0.48 0.66 0.72 0.75 0.77 0.75
2−16 0.48 0.66 0.72 0.75 0.77 0.75
2−18 0.48 0.66 0.72 0.75 0.77 0.75
2−20 0.48 0.66 0.72 0.75 0.77 0.75

pNcomp 0.48 0.66 0.72 0.75 0.77 0.75

5. CONCLUSION

We considered Prandtl’s boundary layer equations for incompressible laminar �ow past a
wedge with angle ��, �∈ [0; 1]. When the Reynolds number is large the solution of this
problem has a parabolic boundary layer on the surface of the wedge. We constructed a di-
rect numerical method for computing approximations to the solution of this problem using
a piecewise uniform �tted mesh technique appropriate for this parabolic boundary layer. We
used the method to approximate the self-similar solution of Prandtl’s problem, in a �nite
rectangular computational domain excluding the leading edge of the wedge, for various val-
ues of Re and �. We constructed and applied a special numerical method, related to the
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Table X. Computed orders of convergence pN�;comp, pNcomp for 1
V∗ (D−

x V� − DxV 8192FS ) where V� is
generated by (AN� ) for various values of �, N and �=0:6.

�\N 8 16 32 64 128 256

2−2 0.09 0.41 0.67 0.69 0.56 1.08
2−4 −0:05 0.28 0.53 0.59 0.52 0.66
2−6 −0:04 0.25 0.47 0.50 0.49 0.54
2−8 −0:01 0.30 0.54 0.53 0.47 0.48
2−10 0.00 0.33 0.60 0.62 0.58 0.61
2−12 0.01 0.34 0.62 0.67 0.64 0.71
2−14 0.02 0.35 0.64 0.70 0.68 0.77
2−16 0.02 0.35 0.64 0.71 0.70 0.80
2−18 0.02 0.35 0.65 0.72 0.71 0.82
2−20 0.02 0.35 0.65 0.72 0.72 0.83

pNcomp 0.09 0.41 0.67 0.60 0.49 0.54

Falkner–Skan technique, to compute reference solutions to the Prandtl. These were used to
obtain approximate boundary conditions on the non-physical boundaries of the computational
domain and in the error analysis of the velocity components and their derivatives. Extensive
numerical experiments indicated that the constructed direct numerical method is Re and �
uniform.
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